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Abstract. We investigate localization behavior of quasiparticles in disordered multi-plane superconduc-
tors with s-wave pairing. By introducing disorder with random site energies, the spatial fluctuations of
Bogoliubov-de Gennes pairing potential are self-consistently determined. The size dependence of rescaled
localization length for a long bar is calculated by using the transfer-matrix method. From the finite-size
scaling analysis we show that there exists a critical point of the disorder strength Wc which separates the
extended and localized quasiparticle states in such quasi-two-dimensional systems. The associated critical
behavior is studied and the relationship of the results to the number of planes is discussed.

PACS. 72.15.Rn Localization effects (Anderson or weak localization) – 73.20.Jc Delocalization processes
– 72.80.Ng Disordered solids – 74.78.-w Superconducting films and low-dimensional structures

1 Introduction

There are two important types of phase transition in the
condensed matter physics: the transition to superconduc-
tivity due to the attractive interaction of electrons and
the metal-insulator transition caused by localization from
disorder. They are essentially different phenomena in na-
ture related to the quantum effects. The transition to the
superconductivity is owing to the Cooper instability of
the Fermi liquid in the presence of the effective attraction
among electrons. On the other hand, the Anderson local-
ization which causes the metal-insulator transition in the
presence of disorder is originated from the quantum inter-
ference among randomly scattered waves. The Anderson
theorem guarantees that the nature of the transition from
a Fermi liquid to an s-wave superconductor is unchanged
by the presence of nonmagnetic impurities or disorder pro-
vided that the system remains being metal in the normal
state [1]. However, if the disorder is strong enough in three
dimensions (3D), or is present in 1D or 2D, the electron
systems will become insulating in the normal state due
to the localization [2]. Thus, it becomes interesting to
know what happens when the Cooper instability occurs
in systems where electron states are localized due to the
disorder.

The properties of electron systems in the coexistence
of disorder and attractive interaction have been investi-
gated for a long time [3–5]. In fact, in the coexistence
of the superconducting pairing and disorder, a compli-
cated situation may appear in 2D. The ground state of the
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system may be an insulator, a metal, or a superconductor,
determined by an infinite-wavelength and zero-frequency
current-current correlation function as a criteria discussed
in reference [6]. The self-consistent calculations based on
the Bogoliubov-de-Gennes (BdG) framework for systems
with strong disorder show that although the spectral gap
persists, the local pairing amplitude develops broad spa-
tial fluctuations and off-diagonal correlations exhibit a
substantial reduction [7–9]. It is shown by a finite-size scal-
ing analysis that a d-wave component of the pairing po-
tential is necessary for the delocalization of quasiparticle
states in a 2D disordered system [10]. For dirty films, the
critical conductance gc below which the superconductiv-
ity vanishes was obtained by Finkelstein by including the
inter-electron interaction [11], and re-derived in Keldysh
formalism by Feigemanl’man et al. [12]. Experimentally,
the effects of the disorder on 2D or quasi-2D s-wave su-
perconductors have also been investigated [13].

In the present paper, we consider a multilayered quasi-
2D disordered model with the s-wave pairing to investigate
the combined effect of disorder and pairing symmetry
on diffusion properties of quasiparticles. By introducing
disorder with random site energies, the spatial fluctua-
tions of Bogoliubov-de Gennes pairing potential are self-
consistently determined. A transition from localized to ex-
tended states has been exhibited in a finite-size scaling
analysis. The results are different from those obtained in
one-plane pure 2D systems where the quasiparticles are
always localized. The associated critical behavior is stud-
ied and the relationship of the results to the number of
planes is discussed.
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The paper is organized as follows: In the next section
we describe the basic formalism in our calculations. In Sec-
tion 3 we present the main results and discuss the related
physical implication. The last section is devoted to brief
summary of conclusions.

2 The basic formalism

We consider a quasi-2D square lattice with on-site disorder
and on-site attractive interaction:

H =
∑

i,j,k;σ

(εijkc†ijk,σcijk,σ)

+
∑

〈ijk,i′ j′k′ 〉;σ
(t0c

†
ijk,σci′ j′k′ ;σ + h.c.)

− V
∑

i,j,k

(c†ijk;↑c
†
ijk;↓cijk;↓ci′ j′k′ ;↑), (1)

where cijk,σ is annihilation operator for electron on
site (i, j, k) with spin σ, i, j and k label the positions
of sites in the x, y and z directions, εijk and t0 denote the
site energy and hopping integral, respectively, and V is the
strength of on-site attractive interaction. Here, we assume
that the Fermi level is at the band center and set as the en-
ergy zero. The z-direction is along the normal of the quasi-
2D system, so k = 1, 2, . . . , N with N being the number
of atomic planes. We only consider the nearest-neighbor
(NN) hopping and set it as energy units (t0 = 1). The
on-site energies are uniformly distributed between −W/2
and W/2 with W being the measure of disorder. As we
only consider s-wave pairing, the BdG pairing potential is
written as

λijk = −V 〈c†ijk; ↑c
†
ijk; ↓〉, (2)

where 〈. . .〉 stands for the statistical averaging. From this
mean-field treatment the Hamiltonian becomes

H =
∑

i,j,k;σ

(εijkc†ijk,σcijk,σ)

+
∑

〈ijk,i′ j′k′ 〉;σ
(t0c

†
ijk,σci′ j′k′ ;σ + h.c.)

+
∑

i,j,k

(λijkcijk,↓cijk,↑ + h.c.). (3)

In order to calculate the localization length within the
scheme of finite-size scaling, we investigate an M ×L×N
bar with M and L being the width in the x-direction and
the length in the y-direction of the strip, respectively. In
the site representation a quasiparticle wavefunction can
be written as a linear superposition

|Ψ〉 =
M∑

i=1

L∑

j=1

N∑

k=1

(aijkc†ijk, σ + bijkcijk, −σ)|F 〉, (4)

where |F 〉 denotes the Fermi sea in the normal state. By
applying the Hamiltonian on this superposition, one can

obtain the BdG equations for the coefficients. For a sys-
tem with cross section M × N , the BdG equations can
be rewritten as relations between coefficients of adjacent
sections in the form of the transfer matrix





�aj+1

�bj+1

�aj

�bj




= T̂j





�aj

�bj

�aj−1

�bj−1




, (5)

where vector �aj (�bj) has MN components aijk (bijk) with
i = 1, 2, . . . , M and k = 1, 2, . . . , N , and T̂j is a 4MN ×
4MN transfer matrix. From BdG equations T̂j can be
written as

T̂j =





û1 v̂ −1̂ 0̂

v̂† û2 0̂ −1̂

0̂ 0̂ 1̂ 0̂

0̂ 0̂ 0̂ 1̂




, (6)

where the symbols with hat are M×M matrices and their
elements are

{û1}ii′;kk′ = δi,i′δk,k′
ε − εijk

t0
− δi,i′−1

− δi,i′+1 − δk,k′−1 − δk,k′+1, (7)

{û2}ii′;kk′ = −δi,i′δk,k′
ε + εijk

t0
− δi,i′−1

− δi,i′+1 − δk,k′−1 − δk,k′+1, (8)

{v̂}ii′;kk′ = −δi,i′δk,k′
λ∗

ijk

t0
. (9)

Here, ε is energy of the quasiparticle.
For a strip with length L, the coefficients at one end

are related to the coefficients at the other end with the
transfer matrices





�aL

�bL

�aL−1

�bL−1




=




L−1∏

j=1

T̂L−j









�a1

�b1

�a0

�b0




. (10)

The Lyapunov exponents of quasiparticle states can be
calculated by using the transfer-matrix method, in which
the orthonormalization procedure is adopted [14]. The
Lyapunov exponents are the logarithms of eigenvalues
of the transfer matrix. In the present case there are
4MN eigenvalues for the transfer matrix, corresponding
to MN spatial transverse channels, two particle-hole chan-
nels, and two propagating directions (forward and back-
ward). The logarithms of eigenvalues for the forward and
backward waves have opposite signs, and we only keep
the 2MN positive ones, whose inverses, ξl(ε, M) with
l = 1, 2, . . . , 2MN , are the localization lengths of the
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corresponding channels. According to reference [15], the
rescaled localization length is defined as

Λl(ε, M) = ξl(ε, M)/M. (11)

The properties of the system, such as the superconduc-
tivity and the conductance in the normal state, are related
to the localization behavior of quasiparticles. We consider
a quasi-2D square system of size MN × MN . From ref-
erence [16], the off-diagonal long-range order (ODLRO)
is defined as the probability of finding a Cooper pair at
the right edge after it being injected from the left edge.
If the Cooper pair is injected into the lth channel of the
left edge, the probability of finding it at the right edge is
related to the rescaled localization length as

Pl(ε, M) =
M∑

i=1

N∑

k=1

|al;i0kbl;i0k|2 exp[−2/Λl(ε, M)], (12)

where al;i0k and bl;i0k are the components of the lth eigen-
vector of the transfer matrix. It can be seen that besides
the prefactor

∑M
i=1

∑N
k=1 |al;i0kbl;i0k|2, that represents the

strength of pairing in this channel, the ODLRO has the
same scaling behavior as the rescaled localization length.
Thus, from the M dependence of the largest Λl(ε, M), we
can determine whether the ODLRO in one channel van-
ishes or not in the thermodynamical limit. In some cases
the properties are determined by the total contribution
from all the channels, so it is also interesting to inves-
tigate the M dependence of the following dimensionless
quantity

g(ε, M) =
2MN∑

l=1

1
π

[
τl(ε, M)

1 − τl(ε, M)

]
, (13)

where τl(ε, M) is the transmission coefficient of the lth
channel

τl(ε, M) = exp[−2/Λl(ε, M)].

g(ε, M) can be regarded as the probability that a quasi-
particle can travel through the system from the left to the
right, no matter what channel is taken.

3 Numerical results

The transfer-matrix calculations and the scaling analysis
on a quasi-2D system with N atomic planes are performed
on a very long strip of length L = 5 × 104 in the y direc-
tion and with a varying width M in the x direction, for
which the periodic boundary conditions are applied. For
a given energy ε, the 4MN × 4MN transfer matrix maps
the amplitudes of a quasiparticle wave function at the left
end of the strip to those at the right end. The propagation
of quasiparticles along the strip is determined by the Lya-
punov exponents and the rescaled localization lengths of
the transfer matrix obtained from the orthonormalization
procedure. In this procedure, the self averaging over the
randomness is achieved by the large length of the strip.

Fig. 1. Dependence of the self-consistent pairing potential λijk

on the on-site energy εijk for one realization of random εijk

with given distribution width W . Dashed curves are the results
from the solutions of the BdG equations in a 20×20×3 quasi-
2D square lattice, and the solid curves are the fitting ones. The
attractive interaction V = 1.8t0. Energy unites are set to be
the hopping integral t0.

Since the attractive interaction V in the Hamiltonian is a
constant and the spatial fluctuations of pairing potential
λijk are caused by the randomness of site energies εijk,
we should first determine the dependence of {λijk} on
{εijk} with self-consistent calculations on an MN × MN
square system. The result is shown in Figure 1. It can be
seen that the local order parameter averagely has a depen-
dence on the local site energy. The fluctuations around the
average curve correspond to the long-range dependence
which will be neglected in the transfer-matrix calculation
because the long-strip geometry with varying width will
distort the long-range correlation and produce unexpected
errors. This approximation can reflect the main features
of the dependence of the local order parameter on the ran-
domness of the site energies, and allow the transfer-matrix
calculation to be carried out. The average curves are of the

Gaussian type, i.e., λ̄ijk = λ0 + A exp
[
−2

(
(εijk−ε0)

ω

)2
]
,

and the corresponding parameters are given in the figure.
This dependence provides a way for determining the val-
ues of λijk in the transfer-matrix calculations of the long
strip.

Figure 2 shows the largest rescaled localization length
Λ(M)/M as a function of width M for various values
of disorder strength W in the case of ε = −0.5t0 and
N = 3. Despite the statistical fluctuations seen in the fig-
ure, there exists a Wc ∼ 4, and the size dependence of the
rescaled localization length is different between W < Wc

and W > Wc. For W > Wc, the rescaled localization
length is decreased with increasing width M , implying the
localization behavior of the quasiparticles. For W < Wc,
the rescaled localization length is slightly increased with
increasing W . This difference in scaling behavior suggests
a transition from localized to extended quasiparticle states
in such a quasi-2D system. This is different from the
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Fig. 2. Largest rescaled localization length as a function of
width M . The energy ε = −0.5t0 and the average pairing
potential λ̄ = 0.2t0. The thickness of the quasi-2D system is
N = 3.

Fig. 3. Dimensionless quantity g as a function of width M for
different values of M . Other parameters are the same as those
in Figure 2.

Fig. 4. Scaling function of (a) the rescaled localization length (b) the dimensionless quantity g for quasi-2D system. Insets:
the log-log plot of (a) the rescaled localization length (b) the dimensionless quantity g as a function of | W − Wc |, where the
symbols represent values from the data and the straight line is the fitting function ζ ∝ |W − Wc|−ν with the shown value of ν.
Other parameters are the same as those in Figure 3.

situation of pure-2D system with the s-wave pairing where
all the quasiparticle states exhibit the behavior of local-
ization [10,17]. The same transfer-matrix calculation has
been done for a pure-2D system with the s-wave pairing
and the curves shown in Figure 2b of reference [10] indi-
cate the decrease of the rescaled localization length with
increasing the width for all investigated parameters. In
the present case the increase of ξ(M)/M with M in the
range W < Wc is very weak, implying that the trend of
transition to extended states is still limited by the dimen-
sionality.

The rescaled localization length shown in Figure 2 re-
flect the localization behavior of quasiparticle in every
channel. This corresponds to the properties which rely on
the transport in one or a few channels. If the contribu-
tions from all possible channels are considered, we can

calculate the dimensionless quantity g in equation (13).
Figure 3 shows the M dependence of g for different values
of disorder strength W . It shows a scaling behavior similar
to that of Figure 2, except for less statistical fluctuations
due to the summation of all channels. The transition point
is Wc ∼ 4, the same as determined from Figure 2. This
means that in the present case the scaling behavior is the
same for the largest rescaled localization length and the
summation of contributions from all channels.

The rescaled localization length and the dimensionless
quantity g for a finite MN × MN square system near
the critical point can be expressed with a scaling function
by using the finite-size scaling ansatz [14,15]. We make
a further assumption that this scaling function varies as
|W−Wc|−ν in the vicinity of the critical point. In Figure 4,
we display the scaling function for the rescaled localization
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length and the dimensionless quantity g. We also deter-
mine the corresponding values of ν from the fitting pro-
cedure. ν = 1.66 and ν = 1.89 as determined from the
rescaled localization length and from g, respectively.

4 Conclusion and discussion

We have investigated the diffusion behavior of quasipar-
ticles in quasi-2D superconductors with on-site energy
disorder and s-wave pairing symmetry. By applying the
transfer-matrix method and the finite size-scaling anal-
ysis, it is found that the quasiparticle states undergo a
transition from localized to extended states by varying
the W . This is originated from the combined effects of
the disorder, the pairing potential, and the quasi-two-
dimensionality. This conclusion is different from the sit-
uation of the 2D one-plane systems with s-wave pairing
where all the quasiparticle states will be localized by small
amount of disorder. As the realistic systems are always
quasi-2D ones, they can be superconducting if the disorder
is not strong. The critical conductance gc, below which the
superconductivity vanishes, can be estimated from Fig-
ure 3 as gc ∼ 3.5 in units of e2/�, in consistence with that
obtained with the Feigemanl’man’s formula [11,12]. The
results are also consistent with related experiments [13].
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